
ACPD
9, 9081–9115, 2009

Black carbon over
Mexico

R. Subramanian et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 9, 9081–9115, 2009
www.atmos-chem-phys-discuss.net/9/9081/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Black carbon over Mexico: the effect of
atmospheric transport on mixing state,
mass absorption cross-section, and
BC/CO ratios
R. Subramanian1, G. L. Kok1, D. Baumgardner2, A. Clarke3, Y. Shinozuka3,
T. L. Campos4, C. G. Heizer4, and B. B. Stephens4

1Droplet Measurement Technologies, Boulder, CO 80301, USA
2Universidad Nacional Autónoma de México, Mexico City, Mexico
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Abstract

A single particle soot photometer (SP2) was operated on the NCAR C-130 during the
MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The
highest BC concentrations were measured over Mexico City (sometimes as much as
2 µg/m3) and over hill-fires to the south of the city. As expected, older, diluted air5

masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC
suggests a CO background of around 65 ppbv, and a background-corrected BC/COnet

ratio of 3.1 (ng/m3 STP)/ppbv (±25%). This ratio is similar for fresh emissions over
Mexico City, as well as for aged airmasses. Comparison of light absorption measured
with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC10

mass-normalized absorption cross-section (MAC) of 10.3 m2 g−1 (±30%) at 660 nm (or
12.4 m2g−1 @ 550 nm, assuming MAC is inversely dependent on wavelength). This
appears independent of aging and similar to the expected absorption cross-section
for aged BC, but values, particularly in fresh emissions, could be biased high due to
instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated15

BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show
both thinly-coated and thickly-coated BC. BC mass per particle of the thinly-coated
mode appears to increase as the air mass ages, possibly due to coagulation and/or
increased coating of the particles containing smaller BC masses. Differences in the
coating indicator patterns for similarly-aged air masses may be due to differences in20

atmospheric processing on each day, including mixing with non-MCMA air masses.

1 Introduction

Strongly-light absorbing carbon (LAC) particles play a major role in climate change
(Jacobson, 2002; Bond, 2007; Levy et al., 2008) by absorbing solar radiation and re-
radiating the energy as heat, warming the local atmosphere. LAC is emitted by com-25

bustion processes, particularly in diesel engine exhaust and biomass smoke. Hence,
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LAC is used as a marker of these anthropogenic processes for air quality monitoring
(Subramanian et al., 2006a). The mixing state of LAC is also important from a climate
change perspective, as LAC coated with non-absorbing matter such as ammonium sul-
fate or organic compounds can absorb up to 50% more light than uncoated LAC (Bond
et al., 2006).5

Conventional filter-based techniques to measure LAC have been the subject of nu-
merous intercomparisons (Schmid et al., 2001; Schauer et al., 2003), showing that
these methods suffer from an operational definition. The term used to describe the
substance is tied to the measurement technique (Bond and Bergstrom, 2006); with
thermal/optical techniques, the measured quantity is called elemental carbon (EC);10

light-absorption measurements produce BC. Hence, to avoid a method-based nomen-
clature, Bond and Bergstrom proposed the term LAC. Subramanian et al. (2006b) ex-
amined the biases that can cause up to a factor-of-two difference between thermal-
optical analysis protocols (Chow et al., 2001), and suggest that biases are unavoidable
in any thermal protocol used to measure EC. Filter-based techniques for BC or particle15

light absorption that depend on optical observations of the filter deposit can experience
problems with particulate emissions from smoldering biomass burning or other sources
of liquid organic matter (Subramanian et al., 2007).

The single particle soot photometer (SP2, Droplet Measurement Technologies, Boul-
der, Colorado, USA) is a laser-induced incandescence instrument that detects particles20

which absorb light (at the laser wavelength of 1064 nm), are refractory, and incandesce
(Stephens et al., 2003). Certain metals can also meet these criteria, but such non-LAC
particles can be filtered by monitoring their incandescence temperature (Schwarz et
al., 2006), which is different from that of LAC. Since the incandescent signal is propor-
tional to the incandescing mass, the SP2 is a true-mass detector without the problem25

of operationally-defined measurements experienced with conventional filter-based ab-
sorption (BC) or thermal (EC) techniques. Further, given the properties of this mea-
sured quantity – refractory, strongly-light absorbing (absorbs light even in the infra-red,
unlike organic carbon, Sun et al., 2007), but independent of assumptions about the
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absorption per unit mass and wavelength dependence of the absorption – the SP2
measurements are closer to LAC than the previously-discussed thermal or optical tech-
niques. However, we continue to refer to the SP2 data as BC in this paper, in keeping
with the convention established by earlier SP2 studies (Schwarz et al., 2006; Moteki et
al., 2007).5

Other issues with conventional filter-based approaches to measuring BC include an
inability to determine the mixing state of BC, and relatively high detection limits that
increase sampling times. The latter is particularly important for aircraft measurements
that require fast time resolution. Since the SP2 measures individual particles, it has
a much lower detection limit than conventional filter-based measurements, allowing for10

highly time-resolved data collection. An added advantage is the ability to evaluate the
mixing state of BC using a light scattering detector also included in the SP2 (Moteki
and Kondo, 2007).

During the recent Megacity Impacts on Regional and Global Environment (MIRAGE)
study, part of the larger Megacity Initiative: Local and Global Research Observations15

(MILAGRO) campaign (Molina et al., 2009), the SP2 was deployed on the NSF/NCAR
C-130 aircraft. Black carbon measurements were made on ten C-130 flights over the
Mexico City basin and other regions of Mexico including the Yucatan peninsula, and
offshore locations. Events sampled included fresh city emissions, biomass fires, as
well as 1- and 2-day-old air masses transported from Mexico City. The flights usu-20

ally included passes over three ground sites called T0, T1 and T2. A comprehen-
sive description and the rationale for selecting these ground sites is summarized by
Fast et al. (2007). Briefly, prior to the study, the MILAGRO modeling working group
determined that during March, Mexico City pollutants are transported northeastward
20–30% of the time, with no preferred direction for the remaining period. Fresh pol-25

lutants emitted in the Mexico City metropolitan area were sampled over and at the
T0 ground site (19.489◦ N/99.148◦ W), located at the northern edge of the city. T1
(19.703◦ N/98.982◦ W) is 29 km northeast of T0, and experiences a mixture of fresh
and aged pollutants. When winds are from the southwest, the MCMA air mass is
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transported over T2 (20.011◦ N/98.906◦ W), which is 63 km northeast of T0, after aging
for a few hours depending on the wind speed. Thus, we can look at aerosol aging
within a few hours of emission by sources in and around Mexico City.

This paper focuses on measurements in significant pollution layers encountered
during the flights on 18, 19, 22 and 23 March (research flight numbers 6, 7, 8 and5

9, respectively; see http://catalog.eol.ucar.edu/milagro/missions/missions.html). Fresh
emissions and a 1-day-old air mass sampled on 18 March were measured again on
19 March as 1-day-old and 2-day-old air masses, respectively, as shown in Fig. 1.
Similarly, fresh outflow and 1-day-old emissions sampled on 22 March were measured
a day later on 23 March. The age of the air mass and its source (typically the Mexico10

City area) is based on the modeling predictions used to determine the flight path during
the field campaign (Fast et al., 2007). These air masses will be used to study the ef-
fects of aging during atmospheric transport on the physical characteristics of BC. The
BC to carbon monoxide ratio (BC/CO) and BC light absorption cross-section, deter-
mined using absorption data from a particle soot absorption photometer (PSAP), are15

also examined for effects of atmospheric aging on these quantities.

2 Methodology and instrument characterization

2.1 Instrument description

The DMT single particle soot photometer (SP2) uses a patented technique based on
excitation by a 1064 nm Nd:YAG intracavity laser to detect particles by scattering and/or20

incandescence. Scattering (1064 nm) and broadband (350 nm to 800 nm) and narrow-
band incandescence (630 to 800 nm) signals are recorded at 5 MHz, with the data from
each particle spanning 36 µs in 180 intervals of 0.2 µs each. Stephens et al. (2003)
showed that a variety of materials, including pure metals, absorb light and incandesce.
However, the dominant absorbing component of atmospheric particulate matter is BC25

(Rosen et al., 1978). Furthermore, the ratio of the incandescence signals from the
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broadband and narrowband detectors, proportional to the vaporization temperature,
can be used to identify the type of the incandescing particle, as metals and BC have dif-
ferent incandescence temperatures (Schwarz et al., 2006). More details, a schematic
and further characterization of the SP2 are provided by Schwarz et al. (2006), Moteki
and Kondo (2007), and Baumgardner et al. (2007). An intercomparison of the SP2 with5

other methods of BC measurement is reported by Slowik et al. (2007).
For the MIRAGE campaign, the sample flow recorded during ascents and descents

was not the actual flow, an issue with the flow measurement system used in the
2006 version of the SP2. While a discussion of vertical profiles is not included in this
manuscript, BC concentrations for a descent through the 2-day-old air mass sampled10

on 19 March and into a biomass burning plume on 23 March (described later) are pre-
sented in Table 1, but are an overestimate and reported for reference purposes only.
Relative abundances of thinly-coated and thickly-coated BC in the 19 March 2-day-old
air mass (shown in Fig. 8) are unaffected as the flow error cancels out when comparing
two modes from the same air mass. All other data are for level flight segments.15

Uncertainties in BC mass concentrations are about ±20% (Baumgardner et al.,
2007), but this does not include the scaling factor uncertainty described in a later sec-
tion. Including the scaling factor uncertainty of ±10% increases the overall uncertainty
on BC mass during level legs to ±22%.

2.2 Specificity of the SP2 for BC20

For a black body, the incandescence temperature is linearly proportional to the ratio
of the broadband and narrowband incandescence signals (Moteki and Kondo, 2007).
The exact relationship between these two quantities depends on the optical set-up
as well as the electronic gains in the detectors. For this study, we used empirically-
derived limits for the BC incandescent temperature ratio, based on the glassy carbon25

material used to calibrate the SP2. However, the incandescent temperature ratio could
not be determined for small BC masses, where the narrowband signal was noisy. In
these cases, the shape of the broadband signal was used as a filter, based on visual
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inspection of over 400 particles.
The incandescent temperature ratio (IR) filter, without the shape-based filter, ex-

cludes 22% of the incandescent mass detected during the 18 March flight. The peak
shape-based criteria adds back 18% of the BC mass; these particles were excluded
by the IR filter as the ratio either could not be determined or was calculated as higher5

than the allowed upper limit. Hence, we caution that the BC data reported here may be
biased high by as much as 18%, depending on the accuracy of the shape-based filter.

2.3 Scaling factors

The incandescence signal is proportional to the BC mass, with the incandescence peak
height calibrated to BC mass. In the following discussions, the BC mass is converted10

to a mass-equivalent diameter (MED), assuming the density of BC as 1.9 g/cm3 based
on the recommendations of Bond and Bergstrom (2006). In case of detector saturation
(which for MIRAGE occurred at ∼36 fg BC or 330 nm BC MED), the particle mass is
not calculated, though the particle is counted as part of the BC number concentration.
Though the SP2 can detect a BC mass of 1 fg or lower, calibrations for the MIRAGE15

experiment were made only down to about 3 fg BC, or about 145 nm MED. The mass
limitation at the upper end and the mass and count limitations at the lower end mean
that the SP2 does not measure the full range of atmospheric BC. Schwarz et al. (2006)
estimate that their SP2 detected about 60% of the BC mass and 5% of the BC number
for the BC mass range from 3–300 fg/particle.20

Following the approach of Schwarz et al. (2006), we fit a log-normal curve to the BC
mass size distribution between BC mass-equivalent diameters of 145–325 nm (3.0 to
34 fg BC), extrapolated over the 10–1000 nm BC MED range, and obtain a BC mass
scaling factor that is then used to determine the number scaling factor as well (Fig. 2).
Changing the diameter range over which the log-normal curve is fitted, from 130 nm25

to 170 nm at the lower end and from 300 to 325 nm at the upper end changes the
mass scaling factor by less than ±10%. Fitting portions of the flight, such as the fresh
outflow over T2 and the 1-day-old air mass sampled on 18 March does not produce
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scaling factors outside of the ±10% uncertainty for these individual legs. For the entire
18 March flight, the SP2 appears to detect 75% of BC mass and 44% of the BC-
containing particle number.

Johnson et al. (2005) observed soot aggregates larger than 1000 nm in Mexico City
in fresh emissions; however, this refers to overall size and not to the BC mass (or BC5

MED) in these aggregates. The particles they observed, at sites a little farther away
from the main downtown area and that could have undergone some atmospheric pro-
cessing, were mostly submicron in size. Hence, our log-normal fit-based scaling factor
should account for any BC particles that saturate the SP2 incandescence detector.

2.4 Optical particle diameter10

The scattering signal is collected over two cones of scattered light, from 30◦–60◦ and
from 120◦–150◦. The scattering signal in combination with Mie theory and an assumed
particle composition can be used to estimate the overall particle diameter. The opti-
cal diameter calculations here assume a homogeneously-mixed BC volume fraction of
25%, 50%, 75% or 100%, whichever is closest to the estimated particle composition;15

a core-shell model does not appear to make an appreciable difference in this calcula-
tion. The truncated collection cone and lower gain employed on the scattering detector
used in the SP2 means non-incandescent particles smaller than 200 nm diameter (as-
suming a 1:1 organosulfate mixture) are not detected efficiently (if at all) in the scatter-
ing channel. Another issue with the scattering signal is that as an incandescent particle20

absorbs light, its temperature increases, volatilizing any non-refractory coating. Hence,
the peak scattering signal measured by the photodetector may not be representative
of the original size of incandescent particles. Gao et al. (2007) employed an addi-
tional, two-element avalanche photodetector to construct a Gaussian peak based on
the leading edge of the actual scattering signal to avoid this problem (called Leading25

Edge Optimization, LEO); however, this technique was developed after the MIRAGE
campaign and cannot be used in the present analysis. Due to particle volatilization
effects on the scattering signal, the scattering-based optical diameters used here are

9088

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/9081/2009/acpd-9-9081-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/9081/2009/acpd-9-9081-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 9081–9115, 2009

Black carbon over
Mexico

R. Subramanian et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

biased low.

2.5 Mixing state of BC

We can determine the mixing state of BC by using the separation between the scatter-
ing and incandescent peaks, which we call the incandescent lag, similar to the method
employed by Moteki and coworkers (Moteki and Kondo, 2007; Moteki et al., 2007).5

Figure 3 shows that for thinly-coated or pure BC particles, the scattering and incandes-
cent peaks occur at almost the same time (incandescent lag ∼0). Wider separations
(3–4 µs) indicate a thicker non-BC coating.

As the LEO correction could not be applied to the scattering signal in this data set,
we use the scattering-based optical particle diameter only to show the relevance of the10

incandescent signal-based coating thickness classification. Figure 3 also shows a com-
parison of scattering-based coating thickness estimates (determined as described in
the previous section) with the incandescent lag. Since the two parameters are rea-
sonably correlated, we use the incandescent lag-based classification of BC particles
as a mixing state indicator by stratifying the data as either “thinly-coated” or “thickly-15

coated” BC. In keeping with the definition by Moteki et al., we use 2 µs as the limiting
gap distinguishing a thinly-coated particle from a thickly-coated particle.

2.6 Complementary measurements

The aircraft carried an extensive suite of gas and particle instruments during the
project; among them were sensors to measure CO and particle light absorption. The20

NCAR/NSF C-130 CO vacuum UV resonance fluorescence instrument is similar to
that of Gerbig et al. (1999). The MIRAGE CO data have a 3 ppbv precision, 1 s
resolution, and a typical accuracy better than ±10% for a 100 ppbv ambient mixing
ratio. The aerosol light absorption coefficient was measured using a 3-wavelength
Radiance Research PSAP operated by the University of Hawaii, and is expected to25

be accurate to within ±20% (excluding any bias due to liquid organic matter, dis-
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cussed later). Both datasets are available as part of the MILAGRO data archives
(http://www-air.larc.nasa.gov/cgi-bin/arcstat-b).

3 Results

3.1 BC concentrations

The MIRAGE field campaign was conducted between 3–31 March 2006, and used5

the NSF/NCAR Hercules C-130 based at Veracruz International Airport. The analysis
for the study presented here is from four of the 10 flights that were flown. The time
histories of BC mass concentrations measured during these flights are presented in
Fig. 4 (normalized to STP, 1 bar and 273.15 K); spatial distributions (BC concentrations
along the flight paths) were shown in Fig. 1.10

On 18 March, the aircraft did an east-west transect at 22.2◦ N, sampling 1-day-old
emissions from Mexico City at multiple altitudes between 3.5–5.4 km above sea level
(ASL). BC mass concentrations were higher at the western ends of these transects,
averaging ∼200 ng/m3, while BC mass at the eastern ends averaged ∼60 ng/m3 or
less. The aircraft rendezvoused with the Department of Energy (DOE) Gulfstream-115

(G1) aircraft for a parallel east-west intercomparison flight near the T2 sampling site.
During this period BC concentrations were high, occasionally over 1000 ng/m3. Fol-
lowing the intercomparison, the aircraft flew over Mexico City. South of the city, the air
was relatively clean with BC often below 50 ng/m3. Emissions from a small mountain
fire were sampled southeast of Mexico City, with BC as high as 1041 ng/m3. The plane20

then flew back over T0, where BC averaged 375±77 ng/m3, before flying back to Ver-
acruz. These and similar events encountered during the four flights are summarized in
Table 1.
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3.2 Carbon monoxide and BC

Carbon monoxide (CO) and BC are both products of incomplete combustion, and thus
indicators of combustion emissions. The BC/CO ratio has been suggested as depen-
dent on the source mix, for example, the fraction of heavy-duty diesels in the fleet
(Kirchstetter et al., 1999), though other factors like fleet age and condition may also5

affect the ratio (Baumgardner et al., 2002). BC/CO ratios have also been used to es-
timate BC emissions based on CO emission inventories (Dickerson et al., 2002). This
assumes that both BC and CO are conserved, so that the BC/CO ratio is constant
despite atmospheric dilution, and changes in the BC/CO ratio are due to other effects.

Figure 5 shows the BC/CO ratios measured during the 18 and 22 March 2006 flights.10

Figure 5a shows a substantial CO concentration apparently not associated with BC.
This is likely the background concentration of CO due to the longer atmospheric life-
time of CO relative to BC – about a month in tropical regions for CO (Khalili and Ras-
mussen, 1990) and about a week for BC (in the absence of rain) (Ogren and Charlson,
1983). Hence, BC/CO ratios should be considered after correcting for this background.15

For the March 18 and 22 flights, this value is estimated at 62 and 67 ppbv CO, respec-
tively, determined rather simplistically by plotting a frequency distribution of the CO
data, and picking the lowest frequency peak as the background CO concentration. Fig-
ures 5b,c present background CO-corrected BC/COnet ratios as time-series plots, and
a histogram of BC/COnet ratios is plotted in Fig. 5(d). Despite the differently-aged air20

masses sampled during these flights, relatively little variation is seen in the BC/COnet

ratios; the mean BC/COnet ratio for both flights is around 3.1 (ng/m3 STP)/ppbv, or
∼2.5 ng BC/µg CO, with an uncertainty of about ±25%.

Dickerson et al. (2002) find a BC/CO ratio of 12.5 ng BC/µg CO measured on board
the R/V Ronald H. Brown and a BC/CO ratio of 27 ng BC/µg CO in the free troposphere25

as measured on board the C-130 aircraft in 1999 during INDOEX (these values are the
slopes, which effectively removes background CO as the intercept), which are both
higher than our measurements on the MIRAGE flights. Kondo et al. (2006) measured
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∆EC/∆CO ratios of ∼6 (ng/m3)/ppbv (reported at ambient conditions) in Japan, and
found this to be at the higher end compared to previously-reported surface measure-
ments, which ranged from 0.88 in Mexico City (Baumgardner et al., 2002) to 4.1 in
Fort Meade, USA (Chen et al., 2001). Though the data presented and tabulated by
Kondo et al. involve either light absorption or thermal-optical techniques for measuring5

BC/EC, a comparison with data based on SP2 measurements is probably acceptable to
within a factor-of-two. A more recent study by Baumgardner et al. (2007) using an SP2
at a ground site in Mexico City, close to vehicular traffic, suggests the BC/CO ratio is
approximately 1 ng/µg. Thus, our airborne BC/COnet ratios of 3.1 (ng/m3 STP)/ppbv
or 2.5 ng/µg, corrected to near-surface STP conditions, are similar to these surface10

measurements.
The background CO measured on the MIRAGE flights (62–67 ppbv or 76–

83 µg/m3 STP) is almost a factor-of-two lower than Dickerson et al.’s aircraft-measured
background CO (138 µg/m3) over the Indian Ocean. Our background CO values are
similar to Kondo et al.’s data for Tokyo (71 ppbv in July and 20 ppbv in January), though15

lower than Chen et al.’s estimate of 180 µg CO/m3 for Fort Meade. A more appropriate
comparison is the MOPITT (http://web.eos.ucar.edu/mopitt/) monthly averaged data at
850 mbar for the Pacific Ocean just west of Mexico, which suggests a CO background
of about 80 ppbv in March/April 2006 (after correcting for a 20% bias, Emmons et al.,
2008). Our estimates compare favorably with the MOPITT data.20

3.3 Particle light absorption and BC

We compare BC concentrations measured with the SP2 to the PSAP absorption mea-
surements at 660 nm, where interference from non-BC species is expected to be min-
imal. Figure 6 shows time-series plots and histograms (for BC >30 ng/m3) of the BC
mass-normalized absorption cross-section (MAC) on a 1-minute-average basis (both25

the PSAP data and BC concentrations are at ambient conditions). The absorption
cross-sections are shown in Table 2 as the average and standard deviation for each
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event/over the location.
The 1-day-old air masses appear to have a higher MAC than the fresh outflow over

T2, but the measurements over T0 on 22 March seem similar to the older air masses
(there is no PSAP data over T0 for the 18 March flight). However, the average MAC
values for the different air masses are not significantly different, particularly given the5

large standard deviations for the 1-day-old air masses and the measurements over T0.
This is surprising, as one might expect that with age, as the non-BC coating thick-
ness increases, the absorption cross-section would also increase by as much as 50%
(Bond et al., 2006), and so MAC would be lower over T0 compared to that in 1-day-old
aerosol. The fire-influenced air mass sampled on 22 March has an absorption cross-10

section similar to the samples not directly influenced by biomass burning. The biomass
burning-influenced aerosol measured on 18 March has a somewhat higher, though
more variable, MAC of 12.2±5.5 m2/g. Ensemble frequency distributions (Fig. 6c) of
the BC MAC suggest a mean of 10.3 m2/g BC at 660 nm, with an uncertainty of ±30%
(propagating the uncertainties associated with the SP2 mass and PSAP absorption15

measurements). In comparison, the MAC for fresh combustion soot is expected to
be around 7.5±1.2 m2/g at 550 nm, or 6.25 m2/g at 660 nm assuming an inverse-
wavelength (λ−1) dependence (Bond and Bergstrom, 2006). Thus, our measurements
of the BC MAC are about 65% higher than that expected for fresh soot, but within
the uncertainty bounds (±30%) of the 50% increase in MAC expected for aged soot20

compared to fresh soot. Other possibilities are discussed in a later section.
Baumgardner et al. (2007) used an SP2 to measure BC at the ground-level in Mex-

ico City, close to vehicular traffic including a bus terminal. Based on the BC mixing
state and particle optical diameter detected by the SP2 (a similar procedure as de-
scribed in the methods section here), the MAC (using Mie theory) was estimated to be25

between 4.5±0.2 and 5.0±0.2 m2/g at 550 nm. Assuming that MAC varies inversely
with wavelength, this translates to around 4 m2/g BC at 660 nm. While the MIRAGE
data does include a few MAC values below 5 m2/g, the mean MAC from the C-130
measurements is ∼2.5 times the Baumgardner et al. estimates.
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3.4 Evolution of BC mixing state

Moteki et al. (2007) looked at the evolution of BC mixing state using an SP2. They pre-
sented results in terms of the fraction of BC-containing particles that is thickly-coated.
Their results were focused on particles with a BC content of 5.4 fg/particle (180 nm
MED with a BC density of 1.77 g/cm3, or 176 nm MED at the BC density we use,5

1.9 g/cm3). Figure 7 shows a similar analysis for the 18 March MIRAGE flight, when
the aircraft sampled fresh Mexico City emissions as well as 1-day-old outflow at 22.2◦ N.
Though the comparison is between 18 March emissions and aged aerosol emitted the
previous day, similar aging processes are expected to affect emissions from either day.
In contrast to Moteki et al., however, we do not see a significant change in the number10

fraction of thickly-coated BC particles even after a day of aging.
As an alternative, we compare results from corresponding air masses sampled on

18 and 19 March and on 22 and 23 March (Fig. 1). As described earlier, the air masses
sampled on the first day of each pair of flights were again sampled on the second day
based on model predictions, so sampling of the same air mass on consecutive days15

should provide better insight into the evolution of BC during atmospheric transport.
Further, instead of focusing on just one narrow BC mass range, we look at the entire
range of BC masses (as the mass-equivalent diameter, MED) measured by the SP2.
Figure 8 shows the BC mixing state for different air masses sampled on the 18 and 19
March flights, with incandescence lag on the y-axis and BC MED on the x-axis; the20

color corresponds to BC number concentration. As explained earlier, zero incandes-
cence lag (or close to zero) indicates thinly-coated BC, while thickly-coated BC show
an incandescence lag greater than 2 µs.

The top left and middle panels in Fig. 8 show fresh emissions sampled over Mexico
City (T0) and over T2, while the top right panel shows the same air mass sampled25

a day later at 24.25◦ N. Two interesting features are seen in these plots. First, the fresh
emissions over T0 appear to be unimodal, with most BC particles showing almost-
zero incandescent lag, i.e. the BC is thinly-coated. The MED peaks around 150 nm
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for this mode. As the air mass moves toward T2, we see more particles at larger
incandescent lags closer to 4 µs – thickly-coated BC. One day later, the MED seems to
have increased for the thinly-coated mode, and the thickly-coated BC mode is clearly
seen.

The bottom panels in Fig. 8 start with 1-day-old aerosol sampled on 18 March be-5

tween 3.5 km–4.1 km (above sea level), ending with the aerosol sampled one day later
off the Texas coast on 19 March. The 1-day-old aerosol sampled on 18 March shows
similar characteristics as the fresh emissions emitted on March 18 and sampled a day
later on 19 March (top row, third panel), with similar MED size distributions and the
presence of both thinly-coated and thickly-coated BC, though the thickly-coated BC10

is relatively more prominent at 4.1 km than at 3.5–3.8 km. The two-day-old air mass
shows a more dispersed distribution. Thus, apart from the usual dilution process that
reduces BC concentrations as the air mass ages, we see an increase in the fraction of
thickly-coated BC at least for the 1-day-old air masses, as well as an apparent increase
in the modal BC MED (BC mass/particle) of the thinly-coated BC mode.15

Figure 9 compares the 22 and 23 March data. Fresh emissions sampled over T0
on 22 March (top left) show a prominent BC mode centered around 170 nm MED with
incandescence lag close to zero, i.e. thinly-coated BC. The same aerosol sampled
a day later (top right) shows a second mode in the same diameter range but with
an incandescence lag between 3–4 µs, i.e. thickly-coated BC. The 1-day-old aerosol20

sampled on 22 March off Veracruz (bottom left) is dominated by thickly-coated BC.
When the air mass was sampled again on 23 March (bottom right), the thickly-coated
BC mode appears less prominent than the thinly-coated mode (compared to the 22
March sample). However, this 2-day-old air mass appears similar to the 2-day-old air
mass sampled on March 19 off the Texas coast (Fig. 8).25
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4 Discussions and conclusion

Two important factors have to be considered when discussing the data presented here.
The first is that mountain fires influence the aerosol and gas-phase pollutants mea-
sured over Mexico City (Yokelson et al., 2007). The second is that the MCMA outflow is
not transported in isolation over Mexico, but likely interacts with other pollution sources5

along the way, including other populated areas and biomass burning events.
The BC/CO and background CO measurements over Mexico during this study are

lower than similar measurements made over the Indian Ocean (Dickerson et al., 2002),
but comparable to corrected MOPPITT data over the Pacific Ocean off the Mexican
coast for March/April 2006. The lower CO background over Mexico may be due to10

lower gross emissions of CO from Mexico compared to emissions from the Indian
subcontinent. Dickerson et al. estimate that in 1999, CO emissions from India were
67 Tg CO/yr, including 15 Tg CO/yr from fossil fuel combustion and 40 Tg CO/yr from
biomass burning. Jiang et al. (2005) estimate that vehicular CO emissions (almost all
of CO) from Mexico City in 2002 were 1.2 Tg CO/yr in 2003. A 1999 Mexico National15

Emissions Inventory (SEMARNAT, 2006) suggests total CO emissions of 7.5 Tg CO/yr.
Though neither of these studies is for the 2006 period (when MIRAGE was conducted),
it is clear that CO emissions from Mexico are almost an order of magnitude lower than
those from India. However, the background CO depends not just on the gross emis-
sions, but also the flux at the point of measurement; such calculations are beyond the20

scope of this study. One explanation for the lower BC/CO ratios is that the source
mix may be different between the Indian subcontinent and Mexico. Baumgardner et
al. (2002) suggest that operating conditions including the altitude can also affect the
BC/CO ratio.

Jiang et al.’s results suggest that BC and CO measured in Mexico City should be25

proportional; this was seen by Baumgardner et al. (2007) for a ground site close to
vehicular traffic in Mexico City. We do see a certain amount of background CO (not
associated with BC) in our airborne measurements over Mexico City. This could be
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explained by mixing of the MCMA outflow with CO-containing background air flowing in
to the city, including CO from mountain fires to the southeast/southwest of MC, which
contribute about one-fifth of the MCMA CO (Yokelson et al., 2007). This theory de-
pends on the contribution of the incoming background air to ambient BC in Mexico City,
which needs further investigation.5

Our measurements of the BC absorption cross-section, about 10.3 m2/g @ 660 nm,
translate to 12.4 m2/g @ 550 nm assuming a λ−1 dependence. This is higher than the
median values of ∼9 m2/g @ 550 nm reported by Doran (2007) and 2.5 times the MAC
values reported by Baumgardner et al. (2007) for measurements at T1 and in Mexico
City, respectively. The Baumgardner et al. data may be biased low as the optical10

particle diameter used to estimate MAC of coated BC in their Mie calculations did not
account for volatilization of the non-refractory coating described by Gao et al. (2007).
However, our SP2/PSAP-based MAC is less than 13 m2/g @ 550 nm, the upper limit of
the range suggested by Bond and Bergstrom (2006) (7.5±1.2 m2/g @ 550 nm), after
accounting for the 50% enhancement suggested due to aging (Bond et al., 2006).15

The SP2 data show that BC over Mexico City is dominated by the thinly-coated
mode, which means that the BC MAC we measured over Mexico City (as similar to
that measured in older air masses) is likely biased high. This could occur if the SP2
collection efficiency for BC masses below 3 fg BC (which might be more prominent in
fresh emissions rather than coagulated older aerosol) is overestimated by our BC mass20

scaling factor, or if the PSAP absorption is biased high.
The PSAP data was corrected using the results of Virkkula et al. (2005); using the

Bond et al. (1999) corrections would further increase the absorption and the derived
MAC. A positive bias in the as-presented data can be caused by liquid organic matter
coating the PSAP filter (Subramanian et al., 2007; Cappa et al., 2008; Lack et al.,25

2008), which would result in our MAC values being higher than actual. This potential
bias in the PSAP absorption measurements onboard the C-130 depends on the relative
amounts of non-absorbing organic matter and BC (Lack et al., 2008). From DeCarlo et
al. (2008), the average organic aerosol concentration over Mexico City during MIRAGE
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was ∼16 µg/m3. The empirical studies by Lack et al. (2008) suggest that in such
conditions, the PSAP could measure as much as 40–70% higher absorption.

One possible explanation is that liquid-phase biomass smoke aerosol creates an ar-
tifact in the PSAP absorption measurements while mixed externally with the city emis-
sions over MCMA; but as the air masses mix further during transport away from MCMA,5

the liquid organic matter coagulates with more-refractory BC to form a coating on the
aerosol that enhances the inherent particulate light absorption (separate from artifacts
in absorption measurement). The initial PSAP artifact is similar in magnitude to the en-
hancement due to coating during aging, at ∼50%; finer differences are likely masked
by the ±30% uncertainty on our MAC values. However, both the SP2 measurement10

efficiency at smaller BC masses, particularly for fresh emissions, as well as PSAP re-
sponse to organic matter of different ages and in different mixing states, need further
research to resolve these discrepancies.

The SP2 data, Figs. 8 and 9, shows that as the aerosol mass ages, the BC becomes
thickly coated. When comparing just one narrow mass range of BC (∼180 nm MED) as15

Moteki et al. (2007) did, we did not see a significant change in the fraction of BC that is
thickly-coated. Broadening our perspective to the entire range of BC mass measured
by the SP2, we see distinct patterns in the coating thickness and mass size distribution
of BC particles as indicated by the incandescent lag measurements. Fresh emissions
show mostly thinly-coated BC particles. As the air mass ages, we find a greater fraction20

of thickly-coated BC particularly in the 1-day-old air masses.
The BC mass/particle (BC MED) of the thinly-coated BC appears to increase with

age. This could mean either a preferential coating of smaller BC particles during aging
(i.e. these smaller particles are lost from the thinly-coated mode), or due to coales-
cence of particles, or both. For instance, a review by Reid et al. (2005) suggests that25

during long range transport of a fire plume, coagulation is the dominant particle growth
mechanism. A modeling study of soot aging timescales by Riemer et al. (2004) sug-
gests that while condensation is the dominant growth mechanism during the day, co-
agulation is more important at night. The concurrent appearance of the thickly-coated
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mode suggests that both coagulation and coating deplete the thinly-coated, lower-MED
mode of fresh emissions.

The comparisons between 1-day-old and 2-day-old air masses show that while the 1-
day-old air mass has a distinct thickly-coated BC mode, what appears to be the same
aerosol mass measured the next day does not. Further, on the March 19 flight, the5

thickly-coated BC mode is more prominent in the measurements at 4.1 km than at the
lower altitudes (3.5–3.8 km). There are at least two possible explanations for these
observations. First is the mixing of the MCMA air mass with fresher aerosol from other
sources, which can change the ensemble characteristics. For example, there are many
local villages as well as a major highway going to the northeast out of Mexico City that10

could be producing significant concentrations of fresh particulate matter.
Second, while aging increases the non-BC coating thickness, wet removal processes

would preferentially wash out the (likely more hydrophilic) thickly-coated BC. Depend-
ing on which processes are more dominant over the life of the aerosol, BC concen-
trations and coating thicknesses may differ during atmospheric transport even if the15

sources are the same. Further, the concentrations and coating characteristics may
end up looking similar during later stages of the aerosol lifetime. This means that the
overall lifetime effect of BC on radiative forcing may not be the same for emissions from
the same source even for emissions just a few days apart. However, it could be argued
that such variations average out over time, but this needs more study.20
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Table 1. Summary of major episodes encountered during the four MIRAGE flights.

Flight date Pollution Altitude BC (ng/m3 STP)
(all 2006) event (km above sea level) Average±SD (low-high)

18 Mar Fresh emissions over T0
22:41–22:47 UTC 2.7 375±77 (240-526)

Fresh outflow over T2
20:50 – 21:36 3.8 457±162 (68-1259)

1-day-old emissions @ 22.2◦ N (west end of transects)
18:28–18:48 UTC 3.5 193±66 (81-317)
18:13–18:24 UTC 3.8 204±67 (71-328)
16:36–17:12 UTC 4.1 220±103 (24-445)

Hill fires southeast of MC
22:10–22:13 UTC 4.1 527±357 (89-1041)

19 Mar Fresh outflow over T2
01:05–01:16 UTC 3.5 301±63 (177-537)
01:18 – 01:31 UTC 3.8 273±64 (161-408)

1-day-old @ 24.25◦ N
23:10–23:37 UTC 3.2 176±41 (58-288)

2-day-old off Texas coast Profilea

(27.3◦ N, 93.5◦ W)
21:32–21:37 UTC 5.3–4.2 152±90 (11-327)

22 Mar Fresh emissions over T0
20:11–20:20 UTC 2.6–3.2 1070±242 (717-1859)

Fresh outflow over T2
18:46–18:56 UTC 3.45 439±130 (221-992)
18:59–19:11 UTC 3.15 461±143 (0-734)

1-day-old emissions off Nautla
17:32–17:49 UTC 4.15 382±100 (159-591)
17:52–18:12 UTC 4.46 227±119 (12-551)
21:25–21:37 UTC 4.1 393±121 (80-562)

Hill fires/South of MC
19:32–19:42 UTC 4.1 697±294 (283-2004)
19:46–20:03 UTC 3.8 657±219 (366-1407)
20:05–20:09 UTC 3.5 607±101 (467-901)

23 Mar 1-day-old emissions over Gulf
17:45–17:59 UTC 4.6 157±41 (11-221)

2-day-old emissions
(northern tip of Yucatan)
18:57–19:03 UTC 4.9 120±23 (76-160)
20:34–20:48 UTC 4.8 117±30 (18-181)

Biomass burning plume Profilea

19:56–20:12 UTC 5.4–0.3 413±1107 (0.8-8047)

a During ascents/descents, the sample flow recorded is not the actual flow, a deficiency of the flow measurement sys-
tem used in the 2006 version of the SP2. Concentrations reported here are for the descents only, are an overestimate,
and are reported for reference purposes only. All other data are for level segments of the flight.
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Table 2. BC mass absorption cross-section (MAC) at 660 nm (based on BC and PSAP data at
ambient conditions).

Event/location 18 Mar 22 Mar

Over T0 N/A 11.6±3.9 m2/g
Fresh outflow over T2 10.6±1.9 m2/g 10.3±1.5 m2/g
One-day-old air mass 11.2±3.6 m2/g 11.1±3.8 m2/g
Hill fires 12.2±5.5 m2/g (SW of MC) 11.6±2.5 m2/g (SE/SW of MC)
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Fig. 1. Flight paths, colored by the BC mass concentration (at STP), for the four MIRAGE
flights discussed in this paper. Top: 18 and 19 March; bottom: 22 and 23 March. T0, T1, T2
are ground sites described in the text (T0 is in Mexico City); VC is Veracruz, where the C130
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Fig. 6. Absorption cross-section of BC at 660 nm, assuming that all light absorption at this
wavelength is due to BC. 1-minute-averaged data, limited to BC concentrations over 30 ng/m3.
The absorption cross-section does not vary appreciably with air mass age (a, b). Gaussian fits
to the absorption cross-section distribution (c) suggest a mean BC absorption cross-section of
∼10.3 m2/g BC at 660 nm.
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Fig. 8. Evolution of BC mixing state during transport north/northeast between 18 and 19 March
2006. The top panels show fresh emissions from Mexico City transported over T0 and fur-
ther north to about 24.25◦ N a day later; a thickly-coated mode is seen to develop during the
transport process. Bottom panels show a 1-day-old air mass measured on March 18 at two dif-
ferent altitudes, and the same air mass measured on March 19 a day later off the Texas coast.
Incandescent lag (µs) plotted on the y-axis, and BC mass/particle (MED, µm) on the x-axis.
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Fig. 9. BC mixing state spectra for the air masses sampled on 22 and 23 March. The top
panels show fresh emissions measured over T0 on March 22 (left), and then measured one
day later over the Gulf of Mexico off Veracruz (right). The bottom panels show 1-day-old air
mass sampled on 22 March (left), sampled again as 2-day-old aerosol on 23 March (right).
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